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A method is presented and mathematically rigorously justified for calculating vibrational processes in 

mechanical systems described by nonlinear differential equations. An example of its implementation is 

considered and it is shown that this method leads to known self-oscillation conditions. 

Physical processes occurring in mechanical objects are rather complicated in the general statement of a 

problem, and their mathematical analogs are reduced to nonlinear differential equations that are not solvable in 

finite form or in quadratures. Therefore in solving such mathematical models, qualitative and approximate methods 

are of great importance, the role and significance of which for practical applications grow steadily. For this purpose 

we suggest a general method for numerical-analytical investigation of vibrational processes, highly applicable in 

practice in carrying out engineering calculations, in order to solve nonlinear differential equations that describe 

nonlinear dynamic processes in mechanical objects with ideal and nonideal energy sources and with the influence 

of nonlinear friction forces and useful resistance on physical processes in the models [1-4 ]. 

Suppose that the general nonlinear differential equation of a vibrational system has the form 

u + f (u) u + g (u) = h ( t ) .  (1) 

It does not appear possible to integrate Eq. (1) in general. To eliminate this drawback, we suggest using 

the method of equivalent linearization for deriving simple analytical relations that are convenient in practice in 

performing engineering calculations, following which the functions f lu) and g(u) are linearized by means of the 
substitution 

i 

f (u) u --, K 1 (u0) ~" , (2) 

g (u) --'K 2 (u0) fi'. 

Here fi" denotes the approximate solution with respect to the exact u: 

K1 (u0) = f (u0) ,  

(3) 

(4) 

g (uo) (5) 
/ q  (uo) - - - ,  

u 0 

The condition u 0 ~ 0 can always be achieved by shifting the sought solution by the constant quantity a ;~ 0; for 

this, we choose u,(t) = u(t )+ a. 

The initial conditions for the exact and linearized solutions at t = 0 are as follows: 
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u ( 0 ) = f f ( 0 ) = u  o ~ e 0 ;  (6) 

u (0) = f f  (0) = u  0. (7) 

Thus ,  the solution of nonl inear  differential  equation (1) is reduced to the solution of the ord inary  

differential equation 

if" + K~ (Uo) Y '  + g z (Uo) ~ = h (t) . (8) 

Integration of differential equation (8) is not difficult. We evaluate the error between the exact and approximate 
solutions 

z (t) = u (t) - fi '(t).  (9) 

To do this, we subtract Eq. (8) from Eq. (1). As a result, we have 

z (t) = Q (u, u ,  t ) ,  (10) 

Q ( u ,  u', t) = K 1 (Uo) u" + K 2(u0) u ' - f ( u )  u' - g (u )  = f ( u )  (u' 0 -  u') + 

= ~ ("o) = / (u)) u o - / ("o) ("'o - ~" ) - g (u) + g ("o) + g (Uo) 
(fi"_ uo) 

Uo 

Having integrated Eq. (10) over t twice, with allowance for the fact that z(0) = z'(0) -- 0 we obtain 

From Eq. (12) we have 

Then we introduce the norm 

1 t 
z( t )  = ~ f ( t - T )  Q ( u , u , 3 ) d r .  

o 

, 1 t , 

z (0 = T f  Q(u , . ,3 )  a~. 
o 

(11) 

(12) 

(13) 

f 

I z' (14) [] z 11 ,t = max ~exp ( -  2 0 (]z  (t)] + ( t ) ] ) f ,  ;t > 0 .  
t 

u(t) 
We evaluate it assuming that the functions f(u, u'), F(u) = f f(T)dT:, and g(u) satisfy Lipschitz conditions on the 

segment [0, T l: a0 

I f (u )  - f ( u o ) l  -< M 1 lu - u0l , I F ( u )  - F(uo)  l --< M2 I u - Uol , (15) 

(16) 

(17) 

We consider the following differences: 

I g (u) - g (Uo) I - N1 I u - Uol . 

I ~ - " o l  z Izl + I . - . o  ; 

Iff - ; , o l - <  I z l +  I .  - " o i -  (18) 
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By virtue of inequalities (15)-(18), from Eqs. (12) and (13) we have 

1 t 

I ~ ( t ) l - - - ~ f l t - T I  I Q ( u , u , r ) l a T ,  
o 

(19) 

, 1 t , 
I z (t)[ < - ~ f  I Q ( u , u , O I  tiT. 

o 

where 

r 

I Q (u, u,  t) I --- If (uo) I I z I + 
[g (Uo) 

I"ol Izl + {M2 + If("0) l} 

i 

x I " ' - " o l  + 
I g (Uo) I 

luol + M1 lUol + N1} 

x 

We select the constants A. and B. from the following conditions: 

A. 
f 

= max ~IK 1 (Uo)[, - -  
t t t, uo,u o 

I g (Uo) l ] 
I"ol I ' 

f 
B. = max ~ I K I (Uo) I + M2 ,  - -  

t,.o,.~ t I"ol 
g (uo) l 

(2o) 

Then 

Therefore,  

]u - u0] . (21) 

+ M 1 [U;[ + N1}" 

I Q ( - , u , t ) l - - - A .  ( I z ' ( t ) l  + I z ( t ) l ) +  B . ( l u ' - u ' 0 1  + l u -  ~01)-  

' 1 t 
e x p ( - a t )  (I z (t) l + I z(t) l) ----~f e x p ( - ; t  ( t -  O) (1 - I f -  T I) (A. exp(--AT) (1 z (T) I + 

o 

+ [z ( t ) [ )  + B. exp ( -  2 0 ( [u '  (Q - U'o[ + [u (Q - u0[))  dT. 

Based on formula (14), Eq. (24) yields 

1 
II z II ~ -< -~ (A. II z II ~ + B. II u - "o II z) C (2, t ) ,  

where 

(22) 

(23) 

(24) 

(25) 

C 0  t , t )  = (2 -1 + 2  -2 ) (1  - e x p ( - 2 0 ) -  7"2 - l e x p ( - 2  0 . 

The  functional dependence C(A, t) has the horizontal asymptote C(2, t) ---, C.(2) at t --- ~ ,  where C.(2) = 
0. + 1)/22. 

From Eq. (25) it follows that the error between exact solution (1) and approximate solution (8) does not 

exceed the quantity 

B . C  (2, T) 
II z II ~. -< 2 - A.C (2, T) II " - "0  II ; -  

(26) 
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Fig. 1. Plot of CUt, t) and C.Ut) for ;t = 2.0. 

W e  fix the a rb i t ra ry  parameter  2 by the condition 

c ( , L  T)  < 
A. + B.  " 

(27) 

Taking into account that  C.Ut) ~- CUt, t) at t --, oo (see Fig. 1), the value of the pa ramete r2  can easily be determined:  

I 
2 > ~ (A. + B. + q(A.  + B.) (8 + A. + B . ) ) .  

In this case, II z - I1" - �9 

The  explicit form of Eq. (8) for approximate solution (1) allows us to write self-oscillation condit ions for 

it in the form [2-4 ] 

1 ( 2 8 )  x:i (uo) < 0 ,  /(2 (uo) > ~ ~ (~0),  v u 0 . 

By virtue of Eq. (8), for the frequency of the self-oscillations we have 

oJ = K 2 (u) - ~ K~l (u0) . (29) 

The  method suggested above for calculating vibrational processes can also be ex tended  in an obvious way 

to mechanica l  sys tems  s imula ted  by equat ions  that  d i f fer  f rom Eq. ( i ) .  Here  we will res t r ic t  ourselves  to 

considerat ion of a specific example.  For this purpose, we apply the procedure developed to calculatig frictional 

self-oscillations of the friction drive of a circular saw [1, 5-7 ] that are simulated by the equation 

J~  + c~o = P - F (~b). (30) 

Here  J is the constant  moment  of inertia; c is the stiffness coefficient of the elastic element;  P is the constant  

magnitude of the external  load; Fqb) is the characteristic of the friction force, described by the nonl inear  function 

of the angular  velocity 

F(~b) = F 0 -  F l~b + F2~b3-  F3~b5, 

where F 0 > 0, F1 > 0, /72 > 0, F 3 > 0 are constant quantities [1, 5, 6]. 

Restricting ourselves to three terms for F(~) ,  we rewrite Eq. (30) in the form 

" 1 " " c P F0 ( 3 1 )  
~ + y ( - -  FI + F 2 ~ Z ) ~ =  f f ~ -  j j . 

Repeating the above reasoning, we lincarize Eq. (31): 
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where 

"" P F0 (32) 
+ K I ( ~ 0 ) ~  + K 2 ~ ' =  j j , 

1 c ( 33 )  KI (~0) = 7  (- F1 + F 2 ~ 2 ) '  K 2 = 7 .  

Equation (32) simulates rather well the mechanical processes of frictional self-oscillations of the friction 
drive of a circular saw and makes it possible to write the self-oscillation conditions [3, 4 ] 

11  F 1 > F2(o 2 ,  c>-~--j(F1-F2(o02) 2 V~O 

With allowance for notation (33) it is seen that the procedure developed with the three-term approximation 
of F(~b) leads to well-known results obtained by other methods and enables one to justify their reliability 
mathematically rigorously [1, 5-7 ]. 

N O T A T I O N  

u, unknown generalized coordinate; u', u", first and second derivatives of the generalized coordinate; f(u) ,  

g(u), and h(t), known functions of the generalized coordinate and time t; M1, M2, NI, Lipschitz constants. 
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